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Convolution formulae for functions of Rayleigh type
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Abstract. N Kishore (1963Proc. Am. Math. Soc.14 527) considered the Rayleigh functions
σn(ν) =

∑∞
k=1 j

−2n
νk , n = 1, 2, . . . , where thejνk are the (non-zero) zeros of the Bessel function

Jν(z) and provided a convolution-type sum formula for findingσn in terms ofσ1, . . . , σn−1.
Here we investigate corresponding expressions for sums of reciprocal powers of zerosτn of
derivatives and other functions related to Bessel functions. It turns out that we can get results
similar to Kishore’s expressingτn in terms ofτ1, . . . , τn−1 and σ1, . . . , σn.

An old method due to Euler, Rayleigh and others for evaluating the zeros±jνk of the Bessel
function

Jν(z) =
∞∑
n=0

(−1)n(z/2)2n+ν

n!0(ν + n+ 1)
(1)

is based on the Rayleigh functions defined [1, p 502] by the formula

σn(ν) =
∞∑
k=1

j−2n
νk n = 1, 2, . . . . (2)

For example, the inequalities

[σn(ν)]
−1/n < j2

ν1 < σn(ν)/σn+1(ν) ν > −1, n = 1, 2, . . . (3)

provide infinite sequences of successively improving upper and lower bounds forj2
ν1. Hence,

it is important to find ‘sum rules’ or formulae forσn(ν). The method originating with Euler
(see [1, p 500] for details) uses a generalization to entire functions of Newton’s formula for
sums of powers of roots of a polynomial in terms of its coefficients; various ramifications
of the method were considered recently in [2]. By this method, we can find all theσn(ν)

in terms of the coefficients in the series (1).
The fact that the Bessel function satisfies additional relations including the differential

equation

z2y ′′ + zy ′ + (z2− ν2)y = 0 (4)

and the recurrence formula

zJ ′ν(z)− νJν(z) = −zJν+1(z) (5)
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suggests that there may be other approaches to finding theσn(ν). Kishore [3] has provided
a compact convolution formula

σn(ν) = 1

ν + n
n−1∑
k=1

σk(ν)σn−k(ν) (6)

from which theσn(ν) may be found successively, starting from

σ1 = 1/[4(ν + 1)]. (7)

The next two sums in order are

σ2(ν) = 1

16(ν + 1)2(ν + 2)
σ3(ν) = 1

32(ν + 1)3(ν + 2)(ν + 3)
.

Formula (6) is useful in proving higher monotonicity properties of the Rayleigh functions
[4] and in deriving congruence properties for some of their functional values [5].

The question arises whether there are analogues of the Kishore formula (6) for the zeros
of other special functions such as the first and second derivatives of the Bessel function.
Here we give a variant of this result for the zeros of the more general function

Nν(z) = az2J ′′ν (z)+ bzJ ′ν(z)+ cJν(z) (8)

considered by Mercer [6]. Using (4), we have

Nν(z) = (aν2− az2+ c)Jν(z)+ (b − a)zJ ′ν(z) (9)

and

zN ′ν(z) = [−2az2+ (b − a)(ν2− z2)]Jν(z)+ (aν2− az2+ c)zJ ′ν(z). (10)

It is convenient to consider the function

yν(z) = Nν(z1/2) = aν2+ c + (b − a)ν
2ν0(ν + 1)

zν/2
∞∏
k=1

(
1− z

ζk

)
(11)

where we choose that branch ofz1/2 which is positive forz > 0 and theζk are the zeros
of yν(z) or the squares of the zeros of the even entire functionz−νNν(z). The constant
multiplicative factor is obtained from the series (1). The validity of this infinite product
expansion follows from facts on entire functions of finite order [7, chapter 8]. We may
differentiate (11) logarithmically [8], to obtain

y ′ν(z)
yν(z)

= ν

2z
−
∞∑
k=1

1/ζk
1− z/ζk =

ν

2z
−
∞∑
k=1

1

ζk

∞∑
n=0

zn

ζ nk
.

This gives

2z
y ′ν(z)
yν(z)

= z1/2N ′ν(z
1/2)

Nν(z1/2)
= ν − 2

∞∑
k=1

∞∑
n=1

zn/ζ nk .

But we may interchange the orders of summation here (since the iterated series converges
absolutely) to obtain

z1/2N ′ν(z
1/2)

Nν(z1/2)
= ν − 2

∞∑
n=1

zn
∞∑
k=1

ζ−nk = ν − 2
∞∑
n=1

τnz
n (12)

where

τn =
∞∑
k=1

ζ−nk . (13)
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In particular, we have as in [3],

z1/2J ′ν(z
1/2)

Jν(z1/2)
= ν − 2

∞∑
n=1

σnz
n. (14)

Using (9) and (10), we can write (12) as[
ν − 2

∞∑
n=1

τnz
n

]
×
[
A(ν)− az− 2q

∞∑
n=1

σnz
n

]
= qν2− (a + b)z+ (aν2− az+ c)

[
ν − 2

∞∑
n=1

σnz
n

]
(15)

where we have used the abbreviated notations

A(ν) = aν2+ (b − a)ν + c q = b − a. (16)

Comparing coefficients of powers ofzn, n = 1, 2, . . . on both sides of (15), we find

2A(ν)τ1+ 2qνσ1 = a + b + 2(aν2+ c)σ1 (17)

and

A(ν)τn + νqσn − aτn−1− 2q
n−1∑
k=1

σkτn−k = −aσn−1+ (aν2+ c)σn n = 2, 3, . . . .

(18)

This leads to

τ1 = a + b + 2[aν2+ (a − b)ν + c]σ1

2A(ν)

or recalling (7),

τ1 = aν2+ (3a + b)ν + 2(a + b)+ c
4(ν + 1)[aν2+ (b − a)ν + c] (19)

and

A(ν)τn = (aν2+ c − νq)σn − a(σn−1− τn−1)+ 2q
n−1∑
k=1

σkτn−k n = 2, 3 . . . . (20)

In the special casea = b = 0, c = 1, where we are dealing with the zeros of the Bessel
function, these reduce, as they should, to

τ1 = 1

4(ν + 1)
τn = σn.

In the special casea = c = 0, b = 1, q = 1, A(ν) = ν, we are dealing with the non-trivial
zeros of the functionJ ′ν(z); (19) and (20) become

τ1 =
∞∑
k=1

[j ′νk]
−2 = ν + 2

4ν(ν + 1)
(21)

and

ντn = ν
∞∑
k=1

[j ′νk]
−2n = −νσn + 2

n−1∑
k=1

σkτn−k n = 2, 3 . . . . (22)
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In particular, these lead to

τ2 =
∞∑
k=1

[j ′νk]
−4 = 1

16

ν2+ 8ν + 8

ν2(ν + 1)2(ν + 2)
(23)

τ3 =
∞∑
k=1

[j ′νk]
−6 = 1

32

ν3+ 16ν2+ 38ν + 24

ν3(ν + 1)3(ν + 2)(ν + 3)
. (24)

These are the same results as obtained by the power series method in [2].
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