Convolution formulae for functions of Rayleigh type

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 319327
(http://iopscience.iop.org/0305-4470/31/46/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:19

Please note that terms and conditions apply.

Convolution formulae for functions of Rayleigh type

Martin E Muldoon \dagger and Asad Raza
Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada

Received 11 August 1998

Abstract

N Kishore (1963 Proc. Am. Math. Soc. 14 527) considered the Rayleigh functions $\sigma_{n}(v)=\sum_{k=1}^{\infty} j_{v k}^{-2 n}, n=1,2, \ldots$, where the $j_{v k}$ are the (non-zero) zeros of the Bessel function $J_{v}(z)$ and provided a convolution-type sum formula for finding σ_{n} in terms of $\sigma_{1}, \ldots, \sigma_{n-1}$. Here we investigate corresponding expressions for sums of reciprocal powers of zeros τ_{n} of derivatives and other functions related to Bessel functions. It turns out that we can get results similar to Kishore's expressing τ_{n} in terms of $\tau_{1}, \ldots, \tau_{n-1}$ and $\sigma_{1}, \ldots, \sigma_{n}$.

An old method due to Euler, Rayleigh and others for evaluating the zeros $\pm j_{v k}$ of the Bessel function

$$
\begin{equation*}
J_{v}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(z / 2)^{2 n+v}}{n!\Gamma(v+n+1)} \tag{1}
\end{equation*}
$$

is based on the Rayleigh functions defined [1, p 502] by the formula

$$
\begin{equation*}
\sigma_{n}(v)=\sum_{k=1}^{\infty} j_{v k}^{-2 n} \quad n=1,2, \ldots \tag{2}
\end{equation*}
$$

For example, the inequalities

$$
\begin{equation*}
\left[\sigma_{n}(\nu)\right]^{-1 / n}<j_{v 1}^{2}<\sigma_{n}(v) / \sigma_{n+1}(v) \quad v>-1, n=1,2, \ldots \tag{3}
\end{equation*}
$$

provide infinite sequences of successively improving upper and lower bounds for $j_{v 1}^{2}$. Hence, it is important to find 'sum rules' or formulae for $\sigma_{n}(\nu)$. The method originating with Euler (see [1, p 500] for details) uses a generalization to entire functions of Newton's formula for sums of powers of roots of a polynomial in terms of its coefficients; various ramifications of the method were considered recently in [2]. By this method, we can find all the $\sigma_{n}(\nu)$ in terms of the coefficients in the series (1).

The fact that the Bessel function satisfies additional relations including the differential equation

$$
\begin{equation*}
z^{2} y^{\prime \prime}+z y^{\prime}+\left(z^{2}-v^{2}\right) y=0 \tag{4}
\end{equation*}
$$

and the recurrence formula

$$
\begin{equation*}
z J_{v}^{\prime}(z)-v J_{v}(z)=-z J_{v+1}(z) \tag{5}
\end{equation*}
$$

\dagger E-mail address: muldoon@yorku.ca
suggests that there may be other approaches to finding the $\sigma_{n}(v)$. Kishore [3] has provided a compact convolution formula

$$
\begin{equation*}
\sigma_{n}(v)=\frac{1}{v+n} \sum_{k=1}^{n-1} \sigma_{k}(v) \sigma_{n-k}(v) \tag{6}
\end{equation*}
$$

from which the $\sigma_{n}(\nu)$ may be found successively, starting from

$$
\begin{equation*}
\sigma_{1}=1 /[4(v+1)] \tag{7}
\end{equation*}
$$

The next two sums in order are

$$
\sigma_{2}(v)=\frac{1}{16(v+1)^{2}(v+2)} \quad \sigma_{3}(v)=\frac{1}{32(v+1)^{3}(v+2)(v+3)}
$$

Formula (6) is useful in proving higher monotonicity properties of the Rayleigh functions [4] and in deriving congruence properties for some of their functional values [5].

The question arises whether there are analogues of the Kishore formula (6) for the zeros of other special functions such as the first and second derivatives of the Bessel function. Here we give a variant of this result for the zeros of the more general function

$$
\begin{equation*}
N_{v}(z)=a z^{2} J_{v}^{\prime \prime}(z)+b z J_{v}^{\prime}(z)+c J_{v}(z) \tag{8}
\end{equation*}
$$

considered by Mercer [6]. Using (4), we have

$$
\begin{equation*}
N_{v}(z)=\left(a v^{2}-a z^{2}+c\right) J_{v}(z)+(b-a) z J_{v}^{\prime}(z) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
z N_{v}^{\prime}(z)=\left[-2 a z^{2}+(b-a)\left(v^{2}-z^{2}\right)\right] J_{v}(z)+\left(a v^{2}-a z^{2}+c\right) z J_{v}^{\prime}(z) \tag{10}
\end{equation*}
$$

It is convenient to consider the function

$$
\begin{equation*}
y_{v}(z)=N_{v}\left(z^{1 / 2}\right)=\frac{a v^{2}+c+(b-a) v}{2^{\nu} \Gamma(v+1)} z^{\nu / 2} \prod_{k=1}^{\infty}\left(1-\frac{z}{\zeta_{k}}\right) \tag{11}
\end{equation*}
$$

where we choose that branch of $z^{1 / 2}$ which is positive for $z>0$ and the ζ_{k} are the zeros of $y_{v}(z)$ or the squares of the zeros of the even entire function $z^{-v} N_{v}(z)$. The constant multiplicative factor is obtained from the series (1). The validity of this infinite product expansion follows from facts on entire functions of finite order [7, chapter 8]. We may differentiate (11) logarithmically [8], to obtain

$$
\frac{y_{v}^{\prime}(z)}{y_{v}(z)}=\frac{v}{2 z}-\sum_{k=1}^{\infty} \frac{1 / \zeta_{k}}{1-z / \zeta_{k}}=\frac{v}{2 z}-\sum_{k=1}^{\infty} \frac{1}{\zeta_{k}} \sum_{n=0}^{\infty} \frac{z^{n}}{\zeta_{k}^{n}}
$$

This gives

$$
2 z \frac{y_{v}^{\prime}(z)}{y_{v}(z)}=\frac{z^{1 / 2} N_{v}^{\prime}\left(z^{1 / 2}\right)}{N_{v}\left(z^{1 / 2}\right)}=v-2 \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} z^{n} / \zeta_{k}^{n}
$$

But we may interchange the orders of summation here (since the iterated series converges absolutely) to obtain

$$
\begin{equation*}
\frac{z^{1 / 2} N_{v}^{\prime}\left(z^{1 / 2}\right)}{N_{v}\left(z^{1 / 2}\right)}=v-2 \sum_{n=1}^{\infty} z^{n} \sum_{k=1}^{\infty} \zeta_{k}^{-n}=v-2 \sum_{n=1}^{\infty} \tau_{n} z^{n} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau_{n}=\sum_{k=1}^{\infty} \zeta_{k}^{-n} \tag{13}
\end{equation*}
$$

In particular, we have as in [3],

$$
\begin{equation*}
\frac{z^{1 / 2} J_{v}^{\prime}\left(z^{1 / 2}\right)}{J_{v}\left(z^{1 / 2}\right)}=v-2 \sum_{n=1}^{\infty} \sigma_{n} z^{n} \tag{14}
\end{equation*}
$$

Using (9) and (10), we can write (12) as

$$
\begin{align*}
& {\left[v-2 \sum_{n=1}^{\infty} \tau_{n} z^{n}\right] \times\left[A(v)-a z-2 q \sum_{n=1}^{\infty} \sigma_{n} z^{n}\right] } \\
= & q v^{2}-(a+b) z+\left(a v^{2}-a z+c\right)\left[v-2 \sum_{n=1}^{\infty} \sigma_{n} z^{n}\right] \tag{15}
\end{align*}
$$

where we have used the abbreviated notations

$$
\begin{equation*}
A(v)=a v^{2}+(b-a) v+c \quad q=b-a \tag{16}
\end{equation*}
$$

Comparing coefficients of powers of $z^{n}, n=1,2, \ldots$ on both sides of (15), we find

$$
\begin{equation*}
2 A(v) \tau_{1}+2 q v \sigma_{1}=a+b+2\left(a v^{2}+c\right) \sigma_{1} \tag{17}
\end{equation*}
$$

and
$A(v) \tau_{n}+v q \sigma_{n}-a \tau_{n-1}-2 q \sum_{k=1}^{n-1} \sigma_{k} \tau_{n-k}=-a \sigma_{n-1}+\left(a v^{2}+c\right) \sigma_{n} \quad n=2,3, \ldots$

This leads to

$$
\tau_{1}=\frac{a+b+2\left[a \nu^{2}+(a-b) v+c\right] \sigma_{1}}{2 A(v)}
$$

or recalling (7),

$$
\begin{equation*}
\tau_{1}=\frac{a v^{2}+(3 a+b) v+2(a+b)+c}{4(v+1)\left[a v^{2}+(b-a) v+c\right]} \tag{19}
\end{equation*}
$$

and
$A(v) \tau_{n}=\left(a v^{2}+c-v q\right) \sigma_{n}-a\left(\sigma_{n-1}-\tau_{n-1}\right)+2 q \sum_{k=1}^{n-1} \sigma_{k} \tau_{n-k} \quad n=2,3 \ldots$
In the special case $a=b=0, c=1$, where we are dealing with the zeros of the Bessel function, these reduce, as they should, to

$$
\tau_{1}=\frac{1}{4(v+1)} \quad \tau_{n}=\sigma_{n}
$$

In the special case $a=c=0, b=1, q=1, A(v)=v$, we are dealing with the non-trivial zeros of the function $J_{v}^{\prime}(z)$; (19) and (20) become

$$
\begin{equation*}
\tau_{1}=\sum_{k=1}^{\infty}\left[j_{v k}^{\prime}\right]^{-2}=\frac{v+2}{4 v(v+1)} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu \tau_{n}=v \sum_{k=1}^{\infty}\left[j_{v k}^{\prime}\right]^{-2 n}=-v \sigma_{n}+2 \sum_{k=1}^{n-1} \sigma_{k} \tau_{n-k} \quad n=2,3 \ldots \tag{22}
\end{equation*}
$$

In particular, these lead to

$$
\begin{align*}
\tau_{2} & =\sum_{k=1}^{\infty}\left[j_{v k}^{\prime}\right]^{-4}=\frac{1}{16} \frac{v^{2}+8 v+8}{v^{2}(v+1)^{2}(v+2)} \tag{23}\\
\tau_{3} & =\sum_{k=1}^{\infty}\left[j_{v k}^{\prime}\right]^{-6}=\frac{1}{32} \frac{v^{3}+16 v^{2}+38 v+24}{v^{3}(v+1)^{3}(v+2)(v+3)} \tag{24}
\end{align*}
$$

These are the same results as obtained by the power series method in [2].

Acknowledgment

This research was supported by grants from the Natural Sciences and Engineering Research Council, Canada.

References

[1] Watson G N 1944 A Treatise on the Theory of Bessel Functions 2nd edn (Cambridge: Cambridge University Press)
[2] Ismail M E H and Muldoon M E 1995 Meth. Appl. Anal. 21
[3] Kishore N 1963 Proc. Am. Math. Soc. 14527
[4] Obi E C 1980 J. Math. Anal. Appl. 77465
[5] See, e.g. Kishore N 1967 Duke Math. J. 34573
Carlitz L 1967 Duke Math. J. 34581
Howard F T 1970 Proc. Am. Math. Soc. 26574
[6] Mercer A McD 1992 Int. J. Math. Math. Sci. 15319
[7] Titchmarsh E C 1939 The Theory of Functions (Oxford: Oxford University Press)
[8] Knopp K 1956 The Theory of Functions part II (New York: Dover)

